On A-computable Families: Numberings, Rogers and Degtev Semilattices

M. Faizrahmanov

Kazan (Volga Region) Federal University Volga Region Scientific-Educational Centre of Mathematics

Equivalences, Numberings, Reducibilities 16–18 June 2021

Basic Definitions

Numbering of a countable set *S* is a surjective mapping $\nu : \mathbb{N} \to S$.

Let H(S) be the set of all numberings of S.

Definition

A numbering ν of a countable family $\mathcal{S} \subseteq 2^{\mathbb{N}}$ is computable (*A*-computable), if the set $G_{\nu} = \{\langle x, y \rangle : y \in \nu(x)\}$ is c.e. (*A*-c.e.). In this case, the family \mathcal{S} is said to be also computable (*A*-computable).

If $A = \emptyset^{(n)}$, then A-computable numberings are called Σ_{n+1}^0 -computable.

Let $Com^A(S) = \{ \nu \in H(S) : \nu \text{ is } A\text{-computable} \},$ $Com^0_{n+2}(S) = Com^{\emptyset^{(n+1)}}(S), Com(S) = Com^{\emptyset}(S).$

1

History

- K. Gödel and A. Turing codings in logic
- A.N. Kolmogorov, foundations of Numbering Theory, mid 50s
- V.A. Uspensky, study of computable numberings of the family of all p.c. functions, 1955–1957
- H. Rogers, study of upper semilattices of equivalence classes of computable numberings of the family of all p.c. functions, 1958
- M.B. Pour-El, A.I. Maltsev, Yu.L. Ershov, S.A. Badaev, S.S. Goncharov..., study of numberings of families of c.e. sets, p.c. functions, computable models, positive equivalences, etc., since 1960

2

History

- S.S. Goncharov, A. Sorbi, approach to the notion of generalized computable numbering, 1997
- S.S. Goncharov, A. Sorbi, S.A. Badaev, S.Yu. Podzorov, S. Lempp..., study of computable numberings in well-known hierarchies, since 1997
- S.A. Badaev, S.S. Goncharov («Generalized computable universal numberings», Algebra and Logic, 53:5 (2014), 355–364), study of computable numberings with an oracle

Part I. Rogers Semilattices of A-computable Families

Basic Definitions

Let $v_0, v_1 \in H(S)$.

Definition

We say that v_0 is reducible to v_1 ($v_0 \le v_1$) if $v_0 = v_1 \circ f$ for some computable function f. Numberings v_0 and v_1 are called equivalent ($v_0 \equiv v_1$) if $v_0 \le v_1$ and $v_1 \le v_0$.

Let
$$(v_0 \oplus v_1)(2x + i) = v_i(x)$$
, $i = 0, 1$.

Let δ be an A-computable family.

The quotient structure $\mathcal{L}^A(\mathcal{S}) = \langle \operatorname{Com}^A(\mathcal{S})_{/\equiv}; \leqslant \rangle$ is said to be the Rogers semilattice of the family \mathcal{S} .

Let
$$\mathcal{L}_{n+2}^0(\mathcal{S}) = \mathcal{L}^{\emptyset^{(n+1)}}(\mathcal{S}), \mathcal{L}(\mathcal{S}) = \mathcal{L}^{\emptyset}(\mathcal{S}).$$

5

Rogers Semilattices

A family \mathcal{F} is effectively discrete if there is a computable function f s.t.

- 1. for every $X \in \mathcal{S}$ there exists an x with $D_{f(x)} \subseteq X$;
- 2. $D_{f(x)} \subseteq X \& D_{f(x)} \subseteq Y \Rightarrow X = Y \text{ for all } X, Y \in \mathcal{S} \text{ and } x \in \mathbb{N}.$

Properties of some Rogers semilattices

- ⊚ (Mal'tsev, 1961) Let & be a computable effectively discrete family. Then $|\mathscr{L}(\&)| = 1$.
- **(Goncharov, Sorbi, 1997)** Let \mathcal{S} be a nontrivial ($|\mathcal{S}| > 1$) Σ_{n+2}^0 -computable family. Then $\mathcal{L}_{n+2}^0(\mathcal{S})$ is infinite.
- **(Badaev, Goncharov, 2001)** Let \mathcal{S} be an infinite Σ_{n+2}^0 -computable family. Then $\mathcal{L}_{n+2}^0(\mathcal{S})$ has infinitely many minimal elements.

Rogers Semilattices

- **(Lachlan, 1964)** If \mathcal{S} is a finite family of c.e. sets, then $\mathcal{L}(\mathcal{S})$ has the greatest element.
- ⊚ **(Badaev, Goncharov, 2014)** Let $\emptyset' \leq_T A$. Then $\mathcal{L}^A(\mathcal{S})$, for a finite family of A-c.e. sets \mathcal{S} , has the greatest element iff $\bigcap \mathcal{S} \in \mathcal{S}$.

Let $\mathcal L$ be an upper semilattice.

The local isomorphism type of $\mathcal{L}=$ All isomporfism types of principle ideals of \mathcal{L} .

Rogers Semilattices

- © (Lachlan, 1972; Podzorov, 2008) The class of all principal ideals of $\mathcal{L}(\mathcal{S})$, where \mathcal{S} is a finite family of c.e. sets and \mathcal{S} contains (does not contain) two different comparable under inclusion sets, coincides with the class of all bounded distributive upper semilattices with Σ_3^0 -presentations (one-element semilattices).
- **(Podzorov, 2008)** The class of all principal ideals of $\mathcal{L}_{n+2}^0(\mathcal{S})$, where \mathcal{S} is a finite nontrivial family of Σ_{n+2}^0 -sets and \mathcal{S} contains (does not contain) two different comparable under inclusion sets, coincides with the class of all bounded distributive upper semilattices with Σ_{n+4}^0 -presentations (Σ_{n+3}^0 -presentations).

Cardinality and Latticeness of $\mathcal{L}(\mathcal{S})$

Questions (Ershov, 1967)

- 1. What can we say about the cardinalities of the Rogers semilattices?
- 2. When are they lattices?

Theorem (Khutoretskii, 1971)

If $|\mathcal{L}(S)| > 1$, then $\mathcal{L}(S)$ is infinite.

Theorem (Selivanov, 1976)

If $|\mathcal{L}(S)| > 1$, then $\mathcal{L}(S)$ is not a lattice.

Cardinality and Latticeness of $\mathcal{L}_{n+2}^0(\mathcal{S})$

Theorem (Goncharov, Sorbi, 1997)

- 1. Let \mathcal{S} be an infinite Σ_{n+2}^0 -computable family. Then $\mathcal{L}_{n+2}^0(\mathcal{S})$ contains an infinite subset such that any two different elements of the subset form a minimal pair.
- 2. Let \mathcal{S} be a finite family of Σ_{n+2}^0 -sets such that $|\mathcal{S}| > 1$. Then $\mathcal{L}_{n+2}^0(\mathcal{S})$ contains an ideal that is isomorphic to the upper semilattice of c.e. m-degrees \mathcal{L}^0 .

Corollary (Goncharov, Sorbi, 1997; Ershov, 1969)

Let \mathcal{S} be a Σ_{n+2}^0 -computable family such that $|\mathcal{S}| > 1$. Then $\mathcal{L}_{n+2}^0(\mathcal{S})$ is infinite and not a lattice.

Cardinality and Latticeness of $\mathcal{L}^A(\mathcal{S})$

Let $\emptyset <_T A$.

Theorem

- 1. Let \mathcal{S} be an infinite A-computable family. Then $\mathcal{L}^A(\mathcal{S})$ contains an infinite subset such that any two different elements of the subset form a minimal pair.
- 2. Let δ be a finite family of A-c.e. sets such that $|\delta| > 1$. Then $\mathcal{L}^A(\delta)$ contains an ideal that is isomorphic to the following ideal of the upper semilattice of m-degrees: $I^m(A) = \{ \deg_{\delta}(X) : X \leq_{T} A \}$
 - $I_T^m(A) = \{ \deg_m(X) : X \leqslant_T A \}.$
- 3. The ideal $I_T^m(A)$ is not a lattice.

Theorem (Jockush, 1969)

The set $\{\deg_m(X): X \equiv_{tt} A\}$ is infinite. Hence, $I_T^m(A)$ is also infinite.

Distinguishing \mathcal{L} from \mathcal{L}^A

Let
$$R_0 = \{ \mathscr{L}(\mathscr{S}) : \mathscr{S} \text{ is computable} \}$$
, $Th(R_0) = \bigcap_{\mathfrak{A} \in R_0} Th(\mathfrak{A})$,

$$R_1 = \bigcup_{\emptyset <_T A} \{ \mathscr{L}^A(\mathscr{S}) : \mathscr{S} \text{ is A-computable} \}, \operatorname{Th}(R_1) = \bigcap_{\mathfrak{A} \in R_1} \operatorname{Th}(\mathfrak{A}).$$

Is there a difference between $Th(\mathbf{R}_0)$ and $Th(\mathbf{R}_1)$?

Definition

An upper semilattice $\langle L; \vee, \leqslant \rangle$ is (weakly) distributive if for every $a_0, a_1, b \in L$ with $b \leqslant a_0 \vee a_1$ (and $b \nleq a_0, b \nleq a_1$) there exist $b_0, b_1 \in L$ such that $b_0 \leqslant a_0, b_1 \leqslant a_1$ and $b = b_0 \vee b_1$.

Proposition (Folklore)

If \mathcal{S} is a finite family of A-c.e. sets, then $\mathcal{L}^A(\mathcal{S})$ is distributive.

Distinguishing ${\mathscr L}$ from ${\mathscr L}^A$

Theorem (Badaev, Goncharov, Sorbi, 2003)

If \mathcal{S} is an infinite Σ_{n+2}^0 -computable family, then $\mathcal{L}_{n+2}^0(\mathcal{S})$ is not weakly distributive.

Theorem

- 1. If \mathcal{S} is an infinite A-computable family, where $\emptyset <_T A$, then $\mathcal{L}^A(\mathcal{S})$ is not weakly distributive.
- 2. There is a computable family \mathcal{S} such that $\mathcal{L}(\mathcal{S})$ is weakly distributive but not distributive.

Corollary

 $Th(\mathbf{R}_0) \neq Th(\mathbf{R}_1).$

Universal A-computable Numberings

A numbering $v \in \text{Com}^A(\mathcal{S})$ is universal if $\alpha \leq v$ for each $\alpha \in \text{Com}^A(\mathcal{S})$.

Theorem (Lachlan, 1964)

Any finite family of c.e. sets has a universal computable numbering.

Theorem (Badaev, Goncharov, 2014)

Let $\emptyset' \leq_T A$. Let \mathcal{S} be a finite family of A-c.e. sets. Then \mathcal{S} has a universal A-computable numbering iff $\bigcap \mathcal{S} \in \mathcal{S}$.

Question (Badaev, Goncharov, 2014)

What happens if we replace the set $\emptyset' \leq_T A$ by $\emptyset <_T A <_T \emptyset'$ or $A \mid_T \emptyset'$?

Universal A-computable Numberings

If $\emptyset <_T A \leqslant_T \emptyset'$ or $\emptyset' \leqslant_T A$, then $\deg_T(A)$ is hyperimmune.

Theorem

For a set A the following conditions are equivalent.

- 1. $deg_T(A)$ is hyperimmune;
- 2. Let \mathcal{S} be a finite family of A-c.e. sets. Then \mathcal{S} has a universal A-computable numbering iff $\bigcap \mathcal{S} \in \mathcal{S}$.
- 3. There is a finite family of *A*-c.e. sets without universal *A*-computable numberings.

Corollary

Let $\deg_T(A)$ is hyperimmune-free. Then any finite family of A-c.e. sets has a universal A-computable numbering.

Khutoretskii Theorem

Theorem (Khutoretskii, 1971)

Let $a, c \in \mathcal{L}(S)$ and $c \nleq a$. Then there exists $b \in \mathcal{L}(S)$ such that a < b and $c \nleq b$. In particular, if c is the greatest element of $\mathcal{L}(S)$ then c is limit: $\forall a \in \mathcal{L}(S) \exists b \in \mathcal{L}(S) [a < c \Rightarrow a < b < c]$.

Theorem (Podzorov, 2004)

Let c be the greatest element of $\mathcal{L}_{n+2}^0(\mathcal{S})$. Then c is limit if one of the following conditions is met.

- 1. $\bigcap S \in S$;
- 2. S is finite;
- 3. \mathcal{S} is Σ_{n+1}^0 -computable.

Khutoretskii's Theorem

- 1. Is Khutoretskii Theorem true for $\mathcal{L}^A(\mathcal{S})$, or at least for $\mathcal{L}^0_{n+2}(\mathcal{F})$?
- 2. Is the greatest element of $\mathcal{L}^A(\mathcal{S})$ (if it exists), or at least of $\mathcal{L}^0_{n+2}(\mathcal{F})$ limit?

Let $\emptyset <_T B \leqslant_T A$.

A numbering $\alpha \in \text{Com}^A(\mathcal{S})$ is said to be *B*-universal if for every $\beta \in \text{Com}^A(\mathcal{S})$ there is a function $f \leq_T B$ such that $\beta = \alpha \circ f$.

Theorem

If $\alpha \in \text{Com}^A(\mathcal{S})$ is not *B*-universal, then there exist $\beta_0, \beta_1 \in \text{Com}^A(\mathcal{S})$ such that $\alpha < \beta_0, \alpha < \beta_1$ and $[\alpha] = [\beta_0] \wedge [\beta_1]$.

Corollary

Let $a, c \in \mathcal{L}^A(\mathcal{S})$ and $c \not\leq a$, where $a = [\alpha]$ for some non-*B*-universal $\alpha \in \operatorname{Com}^A(\mathcal{S})$. Then there exists $b \in \mathcal{L}^A(\mathcal{S})$ such that a < b and $c \not\leq b$.

Khutoretskii Theorem

A numbering γ is non-splittable if there are no numberings $\gamma_0, \gamma_1 < \gamma$ of subsets of $\gamma(\mathbb{N})$ such that $\gamma \equiv \gamma_0 \oplus \gamma_1$.

It is known (see Selivanov's (1982) and Badaev and Goncharov's (2014) papers) that if $\emptyset' \leq_T A$ and $\gamma \in \operatorname{Com}^A(\mathcal{S})$ is universal, then γ is non-splittable.

Let $\gamma \in \text{Com}^A(\mathcal{S})$ be a non-splittable numbering, $[\gamma] = c \in \mathcal{Z}^A(\mathcal{S})$, $a \in \mathcal{Z}^A(\mathcal{S})$.

Theorem

If *A* is high over B ($B \le_T A$, $B'' \le_T A'$), γ is *B*-universal and $c \not \le a$, then there exists $b \in \mathcal{L}^A(\mathcal{S})$ such that a < b and $b \not \le c$.

Corollary

If $\emptyset' \leq_T A$ and a < c, then there exists $b \in \mathcal{L}^A(\mathcal{S})$ such that a < b and $b \not\leq c$. In particular, the greatest element of $\mathcal{L}^A(\mathcal{S})$ and, therefore, $\mathcal{L}^0_{n+2}(\mathcal{F})$ (if it exists) is limit.

Minimal Numberings

A numbering $\mu \in H(S)$ is minimal if $\alpha \leq \mu \Rightarrow \mu \leq \alpha$ for each $\alpha \in H(S)$.

Let $\eta_{\mu} = \{\langle x, y \rangle : \mu(x) = \mu(y)\}$. We say that μ is positive if η_{μ} is c.e. and μ is single-valued if η_{μ} is "=".

Let $K_{sv}(S)$, $K_{pos}(S)$ and $K_{min}(S)$ be the classes of all single-valued, positive, and minimal numberings of S respectively; $K_{sv}(S) \subseteq K_{pos}(S) \subseteq K_{min}(S)$.

Definition (S. Goncharov, A. Yakhnis, V. Yakhnis, 1993)

A class $\mathscr{C} \subseteq H(\mathscr{E})$ is *A*-effectively infinite if there is a p.c. function ψ such that $\{\alpha_{\varphi_e(x)}^A: \varphi_e(x)\downarrow\}\subseteq \mathscr{C} \Rightarrow \forall x\in \mathrm{dom}\varphi_e\,[\mathscr{C}\ni\alpha_{\psi(e)}^A\not\equiv\alpha_{\varphi_e(x)}^A],$

for each e, where α_n^A is the A-computable numbering with the Gödel number n.

Minimal Numberings

Let $\mathscr{C}^A = \{X \subseteq \mathbb{N} : X \text{ is } A\text{-c.e.}\}\ \text{and } \mathscr{C} = \mathscr{C}^\emptyset.$

Theorem (S. Goncharov, A. Yakhnis, V. Yakhnis, 1993)

The classes $K_{sv}(\mathscr{C})$, $K_{pos}(\mathscr{C})$, $K_{min}(\mathscr{C})$ are effectively infinite.

Corollary

 $K_{sv}(\mathscr{C}^A)$ is A-effectively infinite for each A, and $K_{pos}(\mathscr{C}^{\emptyset^{(n)}})$ is $\emptyset^{(n)}$ -effectively infinite for each $n \in \mathbb{N}$.

Theorem (Badaev, Goncharov, 2001)

Any infinite Σ^0_{n+2} -computable family has infinitely many Σ^0_{n+2} -computable minimal numberings.

Minimal Numberings

Question (Badaev, Goncharov, 2001)

Let \mathcal{S} be an infinite Σ_{n+2}^0 -computable family. Is the class $K_{min}(\mathcal{S}) = \{\mu \in H(\mathcal{S}) : \mu \text{ is minimal}\}\ \emptyset^{(n+1)}$ -effectively infinite?

Theorem

Let A be a high set $(\emptyset'' \leq_T A')$. Then for any infinite A-computable family δ we have $\overline{A'''} \leq_1 \operatorname{Min}^A(\delta) = \{e : \alpha_e^A \in K_{min}(\delta)\}.$

Corollary

Let A be a high set (in particular, $A = \emptyset^{(n+1)}$) and \mathcal{S} an infinite A-computable family. Then $K_{min}(\mathcal{S})$ is A-effectively infinite.

Part II. Upper Semilattices of X-computable Families

The Upper Semilattice Ω^X

Let $\Omega^X = \{ \mathcal{S} \subseteq 2^{\mathbb{N}} : \mathcal{S} \text{ is } X\text{-computable} \}$. Then $\langle \Omega^X ; \subseteq \rangle$ is an upper semilattice with the greatest element \mathcal{E}^X and the least element \emptyset .

Degtev, A.N. The semilattice of computable families of recursively enumerable sets. Mathematical Notes of the Academy of Sciences of the USSR 50, 1027–1030 (1991).

The families $\mathcal{S}_0 = \{\{2x\} : x \notin X'\} \cup \{\mathbb{N}\},\$ $\mathcal{S}_1 = \{\{2x\} : x \notin X'\} \cup \{2\mathbb{N}\}\$ have no infimum in Ω^X . Therefore, Ω^X is not a lattice.

Any element $\mathcal{S} \in \Omega^X$ is an atom of Ω^X iff $|\mathcal{S}| = 1$. Therefore, the Fréchet ideal I_F^X of Ω^X is equal to the class $\mathrm{Fin}^X = \{\mathcal{F} \in \Omega^X : \mathcal{F} \text{ is finite}\}.$

Minuends

Definition

A family $\mathcal{A} \in \Omega^X$ is a minuend if $\mathcal{A} \setminus \mathcal{B} \in \Omega^X$ for any $\mathcal{B} \in \Omega^X$. Let Ω_M^X be the class of all minuends.

Definability of Ω_M^X : $\mathcal{A} \in \Omega_M^X$ iff $\forall \mathfrak{B} \in \Omega^X \exists \mathfrak{C} \in \Omega^X [\mathfrak{C} \subseteq \mathcal{A} \& \mathcal{A} \cup \mathfrak{B} = \mathfrak{C} \cup \mathfrak{B} \& \forall \mathfrak{D} \in \Omega^X [\mathfrak{D} \subseteq \mathfrak{C} \& \mathfrak{D} \subseteq \mathfrak{B} \Rightarrow \mathfrak{D} = \emptyset]].$

Theorem (Degtev, 1991)

 Ω_M^X is an ideal of Ω^X that forms a lattice.

Theorem

 $\Omega_M^X = \operatorname{Fin}^X = \{ \mathcal{F} \in \Omega^X : \mathcal{F} \text{ is finite} \}.$ Therefore, I_F^X is definable in Ω^X .

Minuends

A numbering ν is **precomplete** if for every p.c. function ψ there exists a computable function f such that $\nu(\psi(n)) = \nu(f(n))$ if $\psi(n) \downarrow$.

Theorem (Ershov, 1977)

A numbering ν is precomplete iff for any p.c. function ψ there is a computable function g s.t. $\nu(g(x)) = \nu(\psi(x, g(x)))$, if $\psi(x, g(x)) \downarrow$.

Theorem

Let $\mathcal{S} \in \Omega$ and $|\mathcal{S}| > 1$. If \mathcal{S} has a precomplete, positive, universal computable numbering, then there is an infinite family $\mathcal{A} \subseteq \mathcal{S}$ such that

- 1. $\mathcal{A} \setminus \mathcal{B}$ is finite for each infinite computable family $\mathcal{B} \subseteq \mathcal{A}$;
- **2.** $\mathcal{A} \setminus \mathcal{B} \in \Omega$ for each finite family of c.e. sets \mathcal{B} .

A c.e. set *W* is maximal if for any coinfinite c.e. set *B* with $W \subseteq B$ the difference $B \setminus W$ is finite.

Atoms and Coatoms of $\Omega^X_{/I^X_r}$

W is maximal \Rightarrow W* is a coatom of \mathscr{E}^* .

Theorem

For any infinite family $\mathcal{A} \in \Omega^X$ there exists a family $\mathcal{B} \subseteq \mathcal{A} \cup \{\mathbb{N}\}$ such that $\mathcal{B} \in \Omega^X$ and $\mathcal{A} \setminus \mathcal{B}$ is infinite.

Theorem

Let $S \in \Omega^X$ be a coinfinite family containing all finite sets such that $\{e : W_e^A \in S\} \leq_T X''$. Then there exists a coinfinite family $\mathcal{A} \in \Omega^X$ such that $S \subseteq \mathcal{A}$ and for any coinfinite family \mathcal{B} with $\mathcal{A} \subseteq \mathcal{B}$ the difference $\mathcal{B} \setminus \mathcal{A}$ is finite.

 $\Omega^{\rm X}_{/I_{\rm F}^{\rm X}}$ does not contain atoms, but contains coatoms.

Subtrahends

A family $\mathcal{A} \in \Omega^X$ is a subtrahend if $\mathfrak{B} \setminus \mathcal{A} \in \Omega^X$ for any $\mathfrak{B} \in \Omega^X$. Let Ω_S^X be the class of all subtrahends.

 Ω_S^X is also definable in Ω^X .

Theorem (Degtev, 1991)

Let $\mathcal{A} \in \operatorname{Fin}^X$. Then $\mathcal{A} \in \Omega_S^X$ iff any set $F \in \mathcal{A}$ is finite.

Corollary

- 1. $D^X = \{ \mathcal{A} \in \Omega^X : \forall F \in \mathcal{A} [F \text{ is finite}] \}$ is definable in Ω^X .
- 2. The singleton $\mathcal{F} = \{F \subseteq \mathbb{N} : F \text{ is finite}\}\$ is definable in Ω^X .

Indeed, $\mathcal{A} \in D^X$ iff $\forall \mathcal{C} \in \operatorname{Fin}^X [\mathcal{C} \subseteq \mathcal{A} \Rightarrow \mathcal{C} \in \Omega_S^X]$, $\mathcal{B} = \mathcal{F}$ iff $\mathcal{B} \in D^X \& \forall \mathcal{C} \in D^X [\mathcal{C} \subseteq \mathcal{B}]$.

Weak Minuends

A family $\mathcal{A} \in \Omega$ is a weak minuend if $\mathcal{A} \cap \mathcal{B} \in \Omega$ for any $\mathcal{B} \in \Omega$. Let Ω_{WM} be the class of all weak minuends. Note that $\Omega_M = \operatorname{Fin} \subseteq \Omega_{WM}$.

A family $\mathcal{A} \in \Omega$ is called a **completely** c.e. if the index set of \mathcal{A} is c.e. By Rice-Shapiro Theorem, $\mathcal{A} \neq \emptyset$ is completely c.e. iff $\mathcal{A} = \{X : D_{f(x)} \subseteq X, \ x \in \mathbb{N}\}$ for some computable function f.

Proposition (Degtev, 1991)

If \mathscr{A} is completely c.e., then $\mathscr{A} \in \Omega_{WM}$.

Question

Is there a family $\mathcal{A} \in \Omega_{WM}$ such that $\mathcal{A} \neq^* \mathcal{B}$ for any completely c.e. family \mathcal{B} (where $\mathcal{A} =^* \mathcal{B}$ means that $\mathcal{A}\Delta\mathcal{B}$ is finite)?

Thank you for attention!